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ABSTRACT

Wan, Qiaoqiao. M.S.B.M.E., Purdue University, August 2012. Effects of Shear
Stress on RhoA Activities and Cytoskeletal Organization in Chondrocytes. Major
Professor: Sungsoo Na.

Mechanical force environment is a major factor that influences cellular homeostasis

and remodeling. The prevailing wisdom in this field demonstrated that a threshold

of mechanical forces or deformation was required to affect cell signaling. However,

by using a fluorescence resonance energy transfer (FRET)-based approach, we found

that C28/I2 chondrocytes exhibited an increase in RhoA activities in response to

high shear stress (10 or 20 dyn/cm2), while they showed a decrease in their RhoA

activities to intermediate shear stress at 5 dyn/cm2. No changes were observed under

low shear stress (2 dyn/ cm2). The observed two-level switch of RhoA activities was

closely linked to the shear stress-induced alterations in actin cytoskeleton and traction

forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear

stress suppressed RhoA activities, while high shear stress failed to activate them.

Collectively, these results herein suggest that intensities of shear stress are critical in

differential activation and inhibition of RhoA activities in chondrocytes.
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1. INTRODUCTION

Mechanical forces within a physiological range are an important regulator for

insuring tissue homeostasis and remodeling [1] [2] [3] [4]. In vivo studies show that

flow-induced shear in articular cartilage (Figure 1.1a) stimulates a repair response [5]

[6]. Deviations from this physiological loading condition, in contrast, often result in

pathological outcomes associated with various diseases [7] [8]. Moderate mechanical

loading, for instance, is reported to decrease proteolytic activities of degenerative

enzymes in the articular cartilage, while excessive loading may lead to an increase

in expression of matrix metalloproteinases [9]. Although substantial progress has

been made toward the understanding of how cells sense mechanical forces and convert

them into biochemical signals [10] [11] [12] [13] [14], it is not well understood how cells

perceive and differentially respond to a wide spectrum of mechanical forces depending

on their intensities.

In this study, we investigated the role of RhoA in response to fluid flow-induced

shear stress in individual chondrocytes. Recent reports have demonstrated that me-

chanical forces regulate RhoA activation in many types of cells including endothelial

cells [15] [16] [17], smooth muscle cells [18] [19], cardiomyocytes [20], and chondro-

cytes [21] [22]. RhoA is a member of the family of Rho GTPases that act as a

molecular switch in the early mechanotransduction responses [23] [24]. The activ-

ity of Rho GTPases can be changed by several GTPases regulators (Figure 1.1b).

RhoA regulates a number of intracellular signaling cascades that elicit changes in

gene expression and cellular functions including remodeling of actin cytoskeleton and

exertion of traction forces [25] [26]. When activated by mechanical force, RhoA regu-

lates multiple downstream effectors. One of the downstream effectors, Rho-associated

kinase (ROCK), promotes the assembly of actin cytoskeleton and phosphorylation of

myosin light chains. By regulating intracellular tension through the cytoskeleton, this
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RhoA-ROCK signaling alters cell shape, and migration patterns as well as cellular

differentiation [27].

The specific question addressed in this study was whether different magnitude of

shear stress can dissimilarly regulate RhoA activity in C28/I2 chondrocytes. Based

on differential regulation of matrix metalloproteinases in response to moderate and

acute loading, we hypothesized that RhoA activity can be both reduced and elevated

by shear stress depending on its intensity. In order to monitor shear stress-modulated

RhoA activity with high spatiotemporal resolution, we employed a fluorescence reso-

nance energy transfer (FRET)-based approach [28]. This FRET approach allowed us

to determine time-course dynamical activities of RhoA in individual live cells under

shear stress at 2 - 20 dyn/cm2 before, during, and after fluid flow treatment. We used

a FRET-based RhoA biosensor as well as constitutively active RhoA mutant.
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(a)

(b)

Fig. 1.1. Articular cartilage and RhoA protein signaling regulators.
(a) Articular cartilage lay between two bone plates. (b) Regulators
of RhoA protein signaling activate or inhibit Rho activity.
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2. MATERIALS AND METHODS

2.1 DNA Plasmids

We used a FRET-basd, cyan fluorescent protein (CFP)-yellow fluorescent protein

(YFP) RhoA biosensor (Raichu-RhoA)(Figure 2.1a), a gift of Dr. M. Matsuda [28].

The probe consists of truncated RhoA, a RhoA binding domain (RBD) of an effector

protein, and a pair of CFP&YFP. The intramolecular binding of active RhoA to RBD

leads to the close association of CFP with YFP, resulting in an increase of FRET

from CFP to YFP. Thus, the FRET activity of the RhoA biosensor was monitored

to determine RhoA activity(Figure 2.1b). The RhoA biosensor has been very well

characterized in terms of its specificity [28]. As RhoA mutants, a constitutively active

RhoA (RhoA-V14) and a dominant negative RhoA (RhoA-N19) were used [29]. An

mCherry-actin probe was a gift of Dr. R.Tsien.

2.2 Cell Culture and Transfection

Human chondrocyte cell line, C28/I2, was used for this study [30].Cells were

cultured in Dulbeccos modified Eagles medium (DMEM; Lonza) containing 10% FBS

(Hyclone) and 1% penicillin/streptomycin (Lonza) and maintained at 37◦C and 5%

CO2 in a humidified incubator. The DNA plasmids were transfected into the cells

by using Neon transfection system (Invitrogen) according to the product protocols.

After transfection, the cells were transferred to a type I collagen-coated µ-slide cell

culture chamber (Ibidi) and incubated in DMEM comtaining 0.5% FBS for 24-36 h

before imaging experiments.
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(a)

(b)

Fig. 2.1. RhoA biosensor. (a) FRET-based RhoA biosensor used
in this study to monitor RhoA activity. (b) YFP/CFP ratio value
increases with the activation of RhoA.
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2.3 Inhibitors

Cytochalasin D and latrunculin A were purchased from Enzo life sciences. Bleb-

bistatin was from Toronto research. ML-7 was from Biomol. C3 transferase was from

Cytoskeleton.

2.4 Traction Force Microscopy

Polyacrylamide gel was used for traction measurements [31]. The elastic Youngs

modulus of the gels used in this study was 35 kPa (0.3% bisacrylamide and 10%

acrylamide, both purchased from Bio-Rad), which is close to the microscale stiffness

of cartilage [32]. Red fluorescent submicrobeads (0.2 µm in diameter; Invitrogen) were

embedded in the polyacrylamide gel to track the deformation of the gel(Figure 2.2a).

Images of the same region of the gel were taken at different times before or after

experimental interventions. The displacement field was determined by monitoring

the changes in the position of corresponding fluorescent beads between the reference

(cell free) image and the image containing a cell(Figure 2.2b). The traction map was

calculated from the displacement field of the fluorescent beads by implementing the

solution described previously [33].

2.5 Shear Stress Application and Microscopy

During imaging, a unidirectional flow was applied to the cells grown in the parallel

plate flow chamber(Figure 2.3a) or µ-slide cell culture chamber (Ibidi)(Figure 2.3b)

without serum at 37◦C. Shear stress of 2-20 dyn/cm2 was applied to the chamber by

controlling the flow rate of the peristaltic pump (Cole-Parmer). A pulse dampener

(Cole-Parmer) was used to minimize pulsation of the flow. All images were obtained

by using an automated fluorescence microscope (Nikon) equipped with an electron-

multiplying charge-coupled device (EMCCD) camera (Photometrix), a filter whieel

controller (Sutter) and a Perfect Focus System (PFS; Nikon) that maintains the



www.manaraa.com

7

(a)

(b)

Fig. 2.2. Polyacrylamide gel used for traction force experiment. (a)
Cells were seeded on the polyacrylamide gel embedded with red fluo-
rescent submicrobeads. (b) The change of cell contraction in response
to shear stress was determined by monitoring the bead displacement
vector(modified from [34]).
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focus during time-lapse imaging. The following filter sets were used (Semrock): CFP

excitation: 438/24 (center wavelength/bandwidth in nm); CFP emission (483/32);

YFP (FRET) emission: 542/27; mCherry excitation: 562/40; mCherry emission:

641/75. Cells were illuminated with a 100 W Hg lamp through an ND64 (∼ 1.5%

transmittance) neutral density filter to minimize photobleaching. Time-lapse images

were acquired at an interval of 2 min with a X63 (0.75 numerical aperture) objective.

FRET images for RhoA activity was generated with NIS-Elements software (Nikon)

by computing emission ratio of YFP/CFP for the individual cell.

2.6 Statistical Analysis

All statistical data were presented as the mean±standard error of the mean (SEM).

One-way ANOVA was used to determine the statistical differences during time course

experiments. The P-value less than 0.05 was considered significant.
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(a)

(b)

Fig. 2.3. Shear stress experiment device.(a) Cells were seeded on glass
cover slip coated with hydrogel, and applied shear flow inside parallel
plate flow chamber (Modified from [35]). (b) Transfected cell plated
on µ-slide cell culture chamber (Ibidi), and subjected to shear flow.
Arrow denoted flow direction.
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3. RESULTS

3.1 Selective RhoA Activity is Regulated by the Magnitude of Shear

Stress

To determine whether the magnitude of the mechanical force can regulate RhoA

activities, we transfected a FRET-based, CFP-YFP RhoA biosensor [28] into C28/I2

cells and plated the cells on a type I collagen-coated flow chamber. Spatiotemporal

changes of RhoA activities were assessed by monitoring changes on the emission ratio

of YFP/CFP of the RhoA biosensor in the cell. The increase of YFP/CFP ratio value

represents activation of RhoA activity. During imaging, the cells were subjected to

no flow for 2 min, flow-induced shear stress at 2, 5, 10, or 20 dyn/cm2 for 1 hr, and

lastly no flow for ∼ 15 min. RhoA activity was not altered when shear stress of 2

dyn/cm2 was applied (Figure3.1). However, in response to shear stress at 5 dyn/cm2,

we observed rapid (< 2 min) RhoA inhibition (∼ 15 % FRET decrease; Figure 3.2).

When shear stress was removed following the application of 5 dyn/cm2, RhoA activity

was increased and returned to the basal levels within 10 min (Figure 3.2). In marked

contrast to shear stress of 5 dyn/cm2, 10 dyn/cm2 and 20 dyn/cm2 led to slow (>

30 min), but strong RhoA activation (∼ 20% FRET increase; Figure 3.3 and Figure

3.4). These substantially different activity patterns and time courses for RhoA by

shear stress suggest that mechanotransduction mechanisms for RhoA activities might

be different depending on the magnitude of the applied shear stress.
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(a)

(b)

Fig. 3.1. RhoA activity is shear stress-magnitude dependent. RhoA
activity was not altered when shear stress of 2 dyn/cm2 was applied.
Shear stress was applied for 1 h. (a) Time course of RhoA activity
in response to shear stress. Color bars represent emission ratio of
YFP/CFP of the biosensor, an index of RhoA activation. (b) Ratio
images of YFP/CFP emission ratio were averaged over the whole cell
and were normalized to time point 0 min. Blue color indicates pre-
and post-shear stress (no flow), and red color indicates shear stress
(2 dyn/cm2) application. n = 6 cells. Scale bars, 10 µm. Error bars
denote s.e.m.
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(a)

(b)

(c)

Fig. 3.2. RhoA activity is shear stress-magnitude dependent. (a,b)
In response to shear stress at 5 dyn/cm2, RhoA activity is inhibited
rapidly. (b) n = 5 cells. Scale bars, 10 µm. Error bars denote s.e.m.
The white boxes in 3.2a are cropped and enlarged in 3.2c, for a better
visualization.
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(a)

(b)

Fig. 3.3. RhoA activity is shear stress-magnitude dependent. (a,b)
the application of 10 dyn/cm2 shear stress led to slow, but strong
RhoA activation. (b) n = 7 cells. Scale bars, 10 µm. Error bars
denote s.e.m.
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(a)

(b)

(c)

Fig. 3.4. RhoA activity is shear stress-magnitude dependent. (a,b)
20 dyn/cm2 led to slow, but strong RhoA activation. (b) n = 6 cells.
Scale bars, 10 µm. Error bars denote s.e.m. The white boxes in 3.4a
are cropped and enlarged in 3.4c, for a better visualization.
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(a)

(b)

Fig. 3.5. Shear stress-induced actin cytoskeleton organization is essen-
tial for selective RhoA activation. (a) In response to 5 dyn/cm2, the
cell display a decrease in actin (see arrowheads). Three other different
cells showed similar results. (b) The white boxes in 3.5a are cropped
and enlarged in 3.5b, for a better visualization. White arrrows denote
shear flow direction. Scale bars, 10 µm.
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(a)

(b)

Fig. 3.6. Shear stress-induced actin cytoskeleton organization is es-
sential for selective RhoA activation. (a) In response to 20 dyn/cm2,
the actin structure increase (see arrowheads). Three other different
cells showed similar results. (b) The white boxes in 3.6a are cropped
and enlarged in 3.6b, for a better visualization. White arrrows denote
shear flow direction. Scale bars, 10 µm.
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3.2 Shear Stress-induced RhoA Activity is Correlated with F-actin Re-

modeling

It has been established that shear stress-induced RhoA activity is associated with

actin cytoskeleton organization [36]. To determine whether the selective RhoA activ-

ities by shear stress, which are shown above, are associated with shear stress-induced

changes in actin cytoskeleton organization, we transfected C28 chondrocytes with

mCherry-actin and visualized the actin cytoskeletal remodeling while applying shear

stress to the cells. In response to shear stress at 5 dyn/cm2, actin stress fibers grad-

ually disappeared (Figure 3.5). In contrast, shear stress at 20 dyn/cm2 resulted in

an increase in actin stress fiber formation (Figure 3.6). These results are correlated

with altered RhoA activities by shear stress.

3.3 Actin and Intracellular Tension are Necessary for Shear Stress-induced

RhoA Activity

To further explore the potential contribution of actin cytoskeleton in RhoA ac-

tivity in response to shear stress, we first used the pharmacological inhibitors cy-

tochalasin D (CytoD) or latrunculin A (LatA) to disrupt actin filaments. Cells were

pretreated with CytoD or LatA for 15min and subjected to shear stress for 1 hour.

Treatment with CytoD or LatA prevented RhoA inhibition and activation by shear

stress at 5 and 20 dyn/cm2, respectively. We next used ML-7 to inhibit myosin light

chain kinase or blebbistatin (Bleb) to inhibit non-muscle myosin II. Pretreating with

ML-7 (30 min) or Bleb (20 min) also prevented shear stress-induced RhoA activa-

tion and inhibition at corresponding shear stress levels(Figure 3.7). These results

demonstrate that the myosin II-dependent, tensed actin cytoskeleton is necessary for

selective RhoA regulation by shear stress regardless of the shear stress magnitude.



www.manaraa.com

18

(a)

(b)

Fig. 3.7. Shear stress-induced changes in RhoA activity are dependent
on actin cytoskeleton and prestress. The cells were transfected with
RhoA biosensor and then treated with CytoD (1 µg/ml for 15 min),
LatA (1 µM for 15 min) to disrupt F-actin, ML-7 (25 µM for 30 min)
to inhibit myosin light chain kinase, or Bleb (50 µM for 20 min) to
inhibit myosin II. (a,b) YFP/CFP ratio images show C28/I2 cells pre-
incubated with Cyto D, LatA, ML7, or Bleb prevents RhoA inhibition
and activation in response to 5 dyn/cm2 and 20dyn/cm2, respectively.
(c) n= 3 cells for CytoD, n = 4 cells for LatA, n = 4 cells for ML-7,
n = 2 cells for Bleb.(d) n= 4 cells for CytoD, n = 3 cells for LatA,
n = 4 cells for ML-7, n = 3 cells for Bleb. Scale bars, 10 µm. Error
bars denote s.e.m.
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(c)

Fig.3.7. Continued
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(d)

Fig.3.7. Continued
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3.4 Shear Stress Regulates Traction Forces

Traction forces are generated within the cell by the actin-myosin contraction [37].

Shear stress of 12 dyn/cm2 has been shown to increase both RhoA activity and

traction forces of endothelial cells. Because RhoA activation increases traction forces

[38], and our results shown that RhoA activities are regulated by shear stress, we

postulated that the magnitude of shear stress would regulate traction forces. To test

this hypothesis, we quantified changes in tractions in C28 chondrocytes during shear

stress application using the traction force microscopy technique [33]. We found that

shear stress of 5 dyn/cm2 decreased tractions ((∼ 30%) within 20 min (Figure 3.8)),

and shear stress of 20 dyn/cm2 increased tractions substantially ((∼ 70%) within 60

min (Figure 3.9)). These results suggest that changes in tractions may be regulated

by the magnitude of shear stress. The significant decrease and increase in tractions

by 5 dyn/cm2 and 20 dyn/cm2 in Figure 3.8 and Figure 3.9 was preceded by rapid

RhoA modulation by shear stress (see Figure 3.2 and Figure 3.4), suggesting that

shear stress magnitude-dependent RhoA activities may be required to regulate shear

stress-induced traction dynamics.

3.5 Intermediate Shear Stress Decreases Constitutively Activated RhoA

To further examine the specificity of RhoA in response to shear stress, we co-

transfected C28 chondrocytes with a RhoA biosensor and one of either constitutively

active (RhoA-V14) or dominant negative (RhoA-N19) mutant of RhoA. To our sur-

prise, shear stress of 5 dyn/cm2 still decreased (∼15%) RhoA activity of the cell

transfected with RhoA-V14 (Figure 3.10). However, shear stress of 20 dyn/cm2 failed

to further activate RhoA in RhoA-V14-expressing cells (Figure 3.10). The inhibition

of RhoA activity by a dominant negative RhoA-N19 or C3 transferase blocked the

RhoA regulation by shear stress (Figure 3.11 and Figure 3.12).
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(c)

(d)

Fig. 3.8. Dynamic tractions are regulated by stress-magnitude depen-
dent. Dynamic traction maps and time courses of averaged tractions
in response to 5 dyn/cm2. (a) Color bars represent traction values in
pascal (Pa). White arrows indicate shear stress direction. Insets are
corresponding DIC images. (b) n = 5 cells. Value are normalized by
the tractions at 0 min. For the statistical analysis, traction at 20 min
and 60 min were compared with traction at 0 min (* P < 0.05). Scale
bars, 10 µm. Error bars denote s.e.m.
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(a)

(b)

Fig. 3.9. Dynamic tractions are regulated by stress-magnitude depen-
dent. Dynamic traction maps and time courses of averaged tractions
in response to 20 dyn/cm2. (a) Color bars represent traction values
in pascal (Pa). White arrows indicate shear stress direction. Insets
are corresponding DIC images. (b) n = 5 cells. Value are normalized
by the tractions at 0 min. For the statistical analysis, traction at 60
min were compared with traction at 0 min (* P < 0.05). Scale bars,
10 µm. Error bars denote s.e.m.
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(a)

(b)

Fig. 3.10. Shear stress of 5 dyn/cm2 downregulate RhoA activity of
the cell transfected with a constitutively active RhoA, however, 20
dyn/cm2 fail to activate RhoA activity further. (a) RhoA activity
decreases in response to 5 dyn/cm2 and 20 dyn/cm2. White arrows
denote shear stress direction. (b) n = 3 cells for 5 dyn/cm2 and 20
dyn/cm2. Scale bars, 10 µm. Error bars denote s.e.m.



www.manaraa.com

25

(a)

(b)

Fig. 3.11. RhoA-N19 blocked the RhoA regulation by shear stress. (a)
The dominant negative N19 RhoA transfection prevents shear stress-
induced RhoA activity in both stress conditions. (b) n=4 cells for
both 5 dyn/cm2 and 20 dyn/cm2. Scale bars, 10 µm. Error bars
denote s.e.m.
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(a)

(b)

Fig. 3.12. C3 transferase blocked the RhoA regulation by shear
stress. (a) Preincubation of C3 transferase prevents shear-stress-
induced RhoA activity in both stress conditions. (b) n=3 cells for
5 dyn/cm2 and 4 for 20 dyn/cm2. Scale bars, 10 µm. Error bars
denote s.e.m.
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4. DISCUSSION

Using a FRET-based RhoA biosensor, we demonstrated for the first time that

RhoA is differentially regulated in C28/I2 chondrocytes depending on the magnitude

of shear stress: 5 dyn/cm2 reduced RhoA activity, while 10 and 20 dyn/cm2 increased

it. To date, most studies on mechanotransduction have focused on how mechanical

loading can activate intracellular signaling. It has been shown, for instance, that a

threshold of mechanical loading or deformation is required to activate the signaling,

while the loading lower than the threshold does not directly affect the signaling [14]

[39]. However, the molecular mechanism underlying the observed twolevel- switch like

regulation of RhoA is apparently different from a simple on-off switch mechanism.

The results herein show that the differential RhoA activity by shear stress is

correlated with the alteration in remodeling of actin cytoskeleton. The reduced RhoA

activity in response to 5 dyn/cm2 corresponds to a decrease in formation of actin stress

fibers, while the elevated RhoA activity by 10 or 20 dyn/cm2 an increase in their

formation. This correlation of RhoA activity to actin organization has been shown in

endothelial cells subjected to shear stress of 12 dyn/cm2 [16]. although the reported

response (a transient decrease followed by an increase) presents a different temporal

profile. Chondrocytes are in general rich in cortical actin but poor in cytosolic stress

fibers. When they de-differentiate to fibroblast-like cells, they are reported to develop

stress fibers [40]. Data in this study suggest that shapes and differentiation states of

chondrocytes are regulated differentially by intermediate and high shear stresses [41]

[42].

The result in this study also provides the linkage of RhoA activity to force gener-

ation. Using the traction force microscopy technique, we observed that dynamics of

shear-driven cell contractility are correlated with RhoA activity. Contraction plays

an important role in cellular functions including the rates of cell migration as well as
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protein synthesis and transport. It is reported that reduced contractility in chondro-

cytes exhibits higher rates of glycosaminoglycan synthesis [43]. RhoA-induced cell

contractility is mediated by Rho kinase (ROCK), which regulates the phosphoryla-

tion of myosin light chains and the interaction of actin to myosin II [44]. Thus, shear

stress-induced RhoA-ROCK activities could spatially and temporally be correlated

with traction force and regulate protein synthesis and transport at a subcellular scale.

A potential mechanism for the observed RhoA regulation in a form of two-level

switch might be achieved through interactions with integrins, stress-responsive ki-

nases, and/or other GTPases. Activation of integrins such as αvβ3 or α5β1 by

shear stress has been shown to transiently downregulate RhoA activity in endothelial

cells [16]. Furthermore, shear stress-induced activation of Rac1 [45], or Src [46] is re-

ported to downregulate RhoA activity. Future studies are needed to examine whether

the observed twolevel regulation of RhoA is mediated through integrins, FAK, Rac1

or Src. We have shown that intermediate shear stress at 5 dyn/cm2 downregulates

RhoA activity in chondrocytes, which express constitutively active RhoA. It is thus

possible that the Rho GDP dissociation inhibitor (Rho-GDI), one of the known Rho

GTPase regulators, is involved in the observed regulation of RhoA activity, since

Rho-GDI is known to be responsive to shear stress and cyclic stretching [47] [48].

In summary, we demonstrate that shear stress regulates RhoA activity in a stress-

magnitudedependent manner, and that the differential activity of RhoA by shear

stress is associated with the dynamical alterations in cytoskeletal remodeling and

traction force. The results presented here suggest that load-driven changes in RhoA

activity affect cytoskeletal organization and dynamic force generation in chondrocytes.

Future studies will address how RhoA interacts with other Rho family GTPases such

as Rac1 and Cdc42 under mechanical loading and how the loadinduced GTPases are

involved in metalloproteinase activities in chondrocytes.
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